Ad
related to: stock momentum calculation example equation physics
Search results
Results from the WOW.Com Content Network
The Navier–Stokes momentum equation can be derived as a particular form of the Cauchy momentum equation, whose general convective form is: = +. By setting the Cauchy stress tensor σ {\textstyle {\boldsymbol {\sigma }}} to be the sum of a viscosity term τ {\textstyle {\boldsymbol {\tau }}} (the deviatoric stress ) and a pressure term − p I ...
This equation is called the Cauchy momentum equation and describes the non-relativistic momentum conservation of any continuum that conserves mass. σ is a rank two symmetric tensor given by its covariant components. In orthogonal coordinates in three dimensions it is represented as the 3 × 3 matrix:
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.
The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism. Alternatively, in a more compact way, one can formulate the velocity field as follows:
These are known as the Navier–Stokes equations. [35] The momentum balance equations can be extended to more general materials, including solids. For each surface with normal in direction i and force in direction j, there is a stress component σ ij. The nine components make up the Cauchy stress tensor σ, which includes both pressure and shear.
A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Ad
related to: stock momentum calculation example equation physics