Search results
Results from the WOW.Com Content Network
The alkylphosphonium salt is deprotonated with a strong base such as n-butyllithium: [Ph 3 P + CH 2 R]X − + C 4 H 9 Li → Ph 3 P=CHR + LiX + C 4 H 10. Besides n-butyllithium (n BuLi), other strong bases like sodium and potassium t-butoxide (t BuONa, t BuOK), lithium, sodium and potassium hexamethyldisilazide (LiHMDS, NaHMDS, KHDMS, where HDMS = N(SiMe 3) 2), or sodium hydride (NaH) are also ...
This reagent reacts with a ketone or aldehyde in a Wittig reaction to give an enol ether, which can be converted to the aldehyde by acid-induced hydrolysis. The initial report of the reaction demonstrated its use on the steroid tigogenone. It was later used in the Wender Taxol total synthesis and the Stork quinine total synthesis.
Crystallographic characterization of the colourless ylide reveals that the phosphorus atom is approximately tetrahedral. The PCH 2 centre is planar and the P=CH 2 distance is 1.661 Å, which is much shorter than the P-Ph distances (1.823 Å). [5] The compound is usually described as a combination of two resonance structures: Ph 3 P + CH 2 − ...
The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent. Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. [1] [2] [3] Most often, the Wittig reaction is used to introduce a methylene group using ...
It undergoes a Wittig reaction. [1] It is used in the Vitamin B12 total synthesis. Production
When X is a carbanion and Y an alkoxide, the rearrangement is called the [2,3]-Wittig rearrangement and the products are pent-1-en-5-ols. The [1,2]-Wittig rearrangement, which produces isomeric pent-5-en-1-ols, is a competitive process that takes place at high temperatures. [ 2 ]
[1] [3] There exists solid-supported modifications of the reaction. [4] [1] [5] Similar to the Wittig reaction, the reaction suffers from issues with triphenylphosphine oxide by-product removal. Such an issue is mitigated via catalytic aza-Wittig-reactions, some of which entail elements other than phosphorus, like arsenic and tellurium [5] [6].
The Corey–Fuchs reaction is based on a special case of the Wittig reaction, where two equivalents of triphenylphosphine are used with carbon tetrabromide to produce the triphenylphosphine-dibromomethylene ylide. [2] Step 1 of the Corey-Fuchs reaction, generating the active ylide. This ylide undergoes a Wittig reaction when exposed to an aldehyde.