Search results
Results from the WOW.Com Content Network
Within each table, ... ≈ 999.972 kg/m 3 × 1 mm × g 0 = 0.999 972 kgf/m 2 = 9.806 ... The work done when a force of one newton moves the point of its application a ...
{{Convert}} uses unit-codes, which are similar to, but not necessarily exactly the same as, the usual written abbreviation for a given unit. These unit-codes are displayed in column 3 of the following tables. These are accepted as input by {{convert}} as the second and third unnamed parameters: {{convert|100|kg|lb}} → 100 kilograms (220 lb)
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
Magnitude Value Item 1 N 1.4 N The weight of a smartphone [13] [14]: 2.5 N Typical thrust of a Dual-Stage 4-Grid ion thruster.: 9.8 N One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15]
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
The kilogram-force (kgf or kg F), or kilopond (kp, from Latin: pondus, lit. 'weight'), is a non-standard gravitational metric unit of force.It is not accepted for use with the International System of Units (SI) [1] and is deprecated for most uses.
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [1] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).