Ad
related to: rules for solving compound inequalities examples
Search results
Results from the WOW.Com Content Network
Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For example, the defining condition of a zigzag poset is written as a 1 < a 2 > a 3 < a 4 > a 5 < a 6 > ... . Mixed chained notation is used more often with compatible ...
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality.
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
Since all the inequalities are in the same form (all less-than or all greater-than), we can examine the coefficient signs for each variable. Eliminating x would yield 2*2 = 4 inequalities on the remaining variables, and so would eliminating y. Eliminating z would yield only 3*1 = 3 inequalities so we use that instead.
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
The top example shows a case where z is much less than the sum x + y of the other two sides, and the bottom example shows a case where the side z is only slightly less than x + y. In mathematics , the triangle inequality states that for any triangle , the sum of the lengths of any two sides must be greater than or equal to the length of the ...
These two rules can be associated with Euler–MacLaurin formula with the first derivative term and named First order Euler–MacLaurin integration rules. [8] The two rules presented above differ only in the way how the first derivative at the region end is calculated.
Ad
related to: rules for solving compound inequalities examples