Search results
Results from the WOW.Com Content Network
There is an exponential increase in volume associated with adding extra dimensions to a mathematical space.For example, 10 2 = 100 evenly spaced sample points suffice to sample a unit interval (try to visualize a "1-dimensional" cube) with no more than 10 −2 = 0.01 distance between points; an equivalent sampling of a 10-dimensional unit hypercube with a lattice that has a spacing of 10 −2 ...
The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.
The number may be expressed as n = 50 − a so its square is (50−a) 2 = 50 2 − 100a + a 2. One knows that 50 2 is 2500. So one subtracts 100a from 2500, and then add a 2. For example, say one wants to square 48, which is 50 − 2. One subtracts 200 from 2500 and add 4, and get n 2 = 2304.
Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics. Vol. 8 (2nd ed.). Springer-Verlag, Berlin. ISBN 3-540-56670-8. MR 1227985. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.
In astronomy, the angular size or angle subtended by the image of a distant object is often only a few arcseconds (denoted by the symbol ″), so it is well suited to the small angle approximation. [6] The linear size (D) is related to the angular size (X) and the distance from the observer (d) by the simple formula:
The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.
There is a later (2017) second printing. Though usually there is little difference between the first and subsequent printings, in this case the second printing not only deletes from page 53 the Exercises 36, 40, 41, and 42 of Chapter 2 but also offers a (slightly, but still substantially) different presentation of part (ii) of Exercise 17.8.
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is