enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Next, suppose we have a material that violates Kirchhoff's law when integrated, such that the total coefficient of absorption is not equal to the coefficient of emission at a certain , then if the material at temperature is placed into a Hohlraum at temperature , it would spontaneously emit more than it absorbs, or conversely, thus ...

  3. Atomic emission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_emission_spectroscopy

    Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample.

  4. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Emission, absorption, and scattering are thereby simulated through both space and time. For many practical applications it may not be possible, economical or necessary to know all emissivity values locally. "Effective" or "bulk" values for an atmosphere or an entire planet may be used.

  5. Absorption (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(chemistry)

    A more common definition is that "Absorption is a chemical or physical phenomenon in which the molecules, atoms and ions of the substance getting absorbed enter into the bulk phase (gas, liquid or solid) of the material in which it is taken up." A more general term is sorption, which covers absorption, adsorption, and ion exchange. Absorption ...

  6. Absorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Absorption_spectroscopy

    The emission spectrum of iron. Emission is a process by which a substance releases energy in the form of electromagnetic radiation. Emission can occur at any frequency at which absorption can occur, and this allows the absorption lines to be determined from an emission spectrum.

  7. Time-resolved spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Time-resolved_spectroscopy

    In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.

  8. Atomic, molecular, and optical physics - Wikipedia

    en.wikipedia.org/wiki/Atomic,_molecular,_and...

    Molecular physics, while closely related to atomic physics, also overlaps greatly with theoretical chemistry, physical chemistry and chemical physics. [4] Both subfields are primarily concerned with electronic structure and the dynamical processes by which these arrangements change. Generally this work involves using quantum mechanics.

  9. Spectrum (physical sciences) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(physical_sciences)

    The classical example of a discrete spectrum (for which the term was first used) is the characteristic set of discrete spectral lines seen in the emission spectrum and absorption spectrum of isolated atoms of a chemical element, which only absorb and emit light at particular wavelengths. The technique of spectroscopy is based on this phenomenon.