Search results
Results from the WOW.Com Content Network
The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force. Electric field work is formally equivalent to work by other force fields in physics, [1] and the formalism for electrical work is identical to that of mechanical work.
The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = If the force is variable, then work is given by the line integral:
The work function W for a given surface is defined by the difference [1] =, where −e is the charge of an electron, ϕ is the electrostatic potential in the vacuum nearby the surface, and E F is the Fermi level (electrochemical potential of electrons) inside the material.
Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant. The electric field, E {\displaystyle \mathbf {E} } , in units of Newtons per Coulomb or volts per meter, is a vector field that can be defined everywhere, except at the location of point charges (where it diverges to ...
In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar quantity denoted by V or occasionally φ, [1] equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured ...
The electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (i.e., the work done against the field around a closed path is zero, see Kirchhoff's voltage law, which is valid, as long as the circuit elements remain at rest and radiation is ignored [22]). That ...
The electrostatic potential energy, U E, of one point charge q at position r in the presence of an electric field E is defined as the negative of the work W done by the electrostatic force to bring it from the reference position r ref [note 1] to that position r.
Faraday's ice pail experiment is a simple electrostatics experiment performed in 1843 by British scientist Michael Faraday [1] [2] that demonstrates the effect of electrostatic induction on a conducting container. For a container, Faraday used a metal pail made to hold ice, which gave the experiment its name. [3]