enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    This asymptotic formula was first obtained by G. H. Hardy and Ramanujan in 1918 and independently by J. V. Uspensky in 1920. Considering p ( 1000 ) {\displaystyle p(1000)} , the asymptotic formula gives about 2.4402 × 10 31 {\displaystyle 2.4402\times 10^{31}} , reasonably close to the exact answer given above (1.415% larger than the true value).

  3. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/HardyRamanujan...

    The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.

  4. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    It is seen to have dimension 0 only in the cases where ℓ = 5, 7 or 11 and since the partition function can be written as a linear combination of these functions [4] this can be considered a formalization and proof of Ramanujan's observation.

  5. Crank of a partition - Wikipedia

    en.wikipedia.org/wiki/Crank_of_a_partition

    Let n be a non-negative integer and let p(n) denote the number of partitions of n (p(0) is defined to be 1).Srinivasa Ramanujan in a paper [3] published in 1918 stated and proved the following congruences for the partition function p(n), since known as Ramanujan congruences.

  6. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Among the 22 partitions of the number 8, there are 6 that contain only odd parts: 7 + 1; 5 + 3; 5 + 1 + 1 + 1; 3 + 3 + 1 + 1; 3 + 1 + 1 + 1 + 1 + 1; 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1; Alternatively, we could count partitions in which no number occurs more than once. Such a partition is called a partition with distinct parts. If we count the ...

  7. Hardy–Ramanujan theorem - Wikipedia

    en.wikipedia.org/wiki/HardyRamanujan_theorem

    In mathematics, the HardyRamanujan theorem, proved by Ramanujan and checked by Hardy [1] states that the normal order of the number () of distinct prime factors of a number is ⁡ ⁡. Roughly speaking, this means that most numbers have about this number of distinct prime factors.

  8. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  9. Rank of a partition - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_partition

    The following notations are used to specify how many partitions have a given rank. Let n, q be a positive integers and m be any integer. The total number of partitions of n is denoted by p(n). The number of partitions of n with rank m is denoted by N(m, n). The number of partitions of n with rank congruent to m modulo q is denoted by N(m, q, n).

  1. Related searches hardy ramanujan partition formula calculator soup based on area of trapezoid

    ramanujan partitionramanujan partition function