enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Invertible matrix. In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse.

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]

  5. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    Formula computing the inverse of the sum of a matrix and the outer product of two vectors. In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a " rank -1 update" to a matrix whose inverse has previously been computed. [1][2][3] That is, given an invertible matrix and the ...

  6. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule. In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one ...

  7. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    Woodbury matrix identity. In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1][2] – says that the inverse of a rank- k correction of some matrix can be computed by doing a rank- k correction to the inverse of the original matrix. Alternative names for this formula are the matrix ...

  8. Generalized inverse - Wikipedia

    en.wikipedia.org/wiki/Generalized_inverse

    Generalized inverse. Algebraic element satisfying some of the criteria of an inverse. In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is ...

  9. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinant. In mathematics, the determinant is a scalar -valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det (A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if ...