Search results
Results from the WOW.Com Content Network
c = n/V. Dimension. L − 3 N {\displaystyle {\mathsf {L}}^ {-3} {\mathsf {N}}} Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution.
In chemistry, the molar absorption coefficient or molar attenuation coefficient (ε) [1] is a measurement of how strongly a chemical species absorbs, and thereby attenuates, light at a given wavelength. It is an intrinsic property of the species. The SI unit of molar absorption coefficient is the square metre per mole (m2/mol), but in practice ...
The mole (symbol mol) is a unit of measurement, the base unit in the International System of Units (SI) for amount of substance, a quantity proportional to the number of elementary entities of a substance. One mole contains exactly 6.022 140 76 × 1023 elementary entities (approximately 602 sextillion or 602 billion times a trillion), which can ...
Concentration. In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1] The concentration can refer to any kind of chemical mixture, but most ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Number density. The number density (symbol: n or ρN) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density.
The apparent dimension of this K value is concentration 1−p−q; this may be written as M (1−p−q) or mM (1−p−q), where the symbol M signifies a molar concentration (1M = 1 mol dm −3). The apparent dimension of a dissociation constant is the reciprocal of the apparent dimension of the corresponding association constant, and vice versa.