Search results
Results from the WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
Water pouring puzzle. Starting state of the standard puzzle; a jug filled with 8 units of water, and two empty jugs of sizes 5 and 3. The solver must pour the water so that the first and second jugs both contain 4 units, and the third is empty. Water pouring puzzles (also called water jug problems, decanting problems, [1][2] measuring puzzles ...
The first ten members of the harmonic sequence . In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, [a] which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size. With the restricted definition, each Farey sequence starts with the value 0, denoted ...
A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...
The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial. This quadratic polynomial has two roots, and. The golden ratio is also closely related to the polynomial. which has roots and As the root of a quadratic polynomial, the golden ratio is a constructible number.
1/2 − 1/4 + 1/8 − 1/16 + ⋯. In mathematics, the infinite series 1/2 − 1/4 + 1/8 − 1/16 + ⋯ is a simple example of an alternating series that converges absolutely. It is a geometric series whose first term is 1 2 and whose common ratio is − 1 2 , so its sum is.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.