enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    v. t. e. In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability ...

  3. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question. If the distribution of X is discrete and ...

  4. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    Law of total expectation. The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations[2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same ...

  5. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    Conditional expectation. In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can ...

  6. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    In mathematical statistics, the Fisher information (sometimes simply called information[1]) is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.

  7. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator 's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency ...

  8. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    Law of total variance. In probability theory, the law of total variance[1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then. {\displaystyle \operatorname {Var} (Y ...

  9. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    The algebra of random variables in statistics, provides rules for the symbolic manipulation of random variables, while avoiding delving too deeply into the mathematically sophisticated ideas of probability theory. Its symbolism allows the treatment of sums, products, ratios and general functions of random variables, as well as dealing with ...