enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  4. Lévy's continuity theorem - Wikipedia

    en.wikipedia.org/wiki/Lévy's_continuity_theorem

    converges in distribution to some random variable X X n → D X , {\displaystyle X_{n}\ {\xrightarrow {\mathcal {D}}}\ X,} i.e. the cumulative distribution functions corresponding to random variables converge at every continuity point of the c.d.f. of X ;

  5. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables.

  6. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

  7. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    For every (fixed) , is a sequence of random variables which converge to () almost surely by the strong law of large numbers. Glivenko and Cantelli strengthened this result by proving uniform convergence of F n {\displaystyle \ F_{n}\ } to F . {\displaystyle \ F~.}

  8. 6 Free Budget Templates for Excel, Google Sheets & Numbers - AOL

    www.aol.com/6-free-budget-templates-excel...

    Whether you use Microsoft Office Excel, Google Sheets or Apple Numbers, there’s a free spreadsheet for you. These budgeting templates will give you a head start from simple monthly and yearly ...

  9. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .