Search results
Results from the WOW.Com Content Network
For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6, 28, 496 and 8128. [2] The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum.
So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number M p × (M p +1)/2 = 2 p − 1 × (2 p − 1). For example, the Mersenne prime 2 2 − 1 = 3 leads to the corresponding perfect number 2 2 ...
This means that there should on average be about ≈ 5.92 primes p of a given number of decimal digits such that is prime. The conjecture is fairly accurate for the first 40 Mersenne primes, but between 2 20,000,000 and 2 85,000,000 there are at least 12, [ 8 ] rather than the expected number which is around 3.7.
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
Notably, absent consensus, please do not add articles about individual perfect numbers themselves (such as 6). Pages in category "Perfect numbers" The following 11 pages are in this category, out of 11 total.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Perfect and superperfect numbers are examples of the wider class of m-superperfect numbers, which satisfy =, corresponding to m = 1 and 2 respectively. For m ≥ 3 there are no even m-superperfect numbers. [1] The m-superperfect numbers are in turn examples of (m,k)-perfect numbers which satisfy [3]