Search results
Results from the WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer , a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
The map in question could be denoted (,) using the arrow notation. The expression x ↦ f ( x , t 0 ) {\displaystyle x\mapsto f(x,t_{0})} (read: "the map taking x to f of x comma t nought") represents this new function with just one argument, whereas the expression f ( x 0 , t 0 ) refers to the value of the function f at the point ( x 0 , t 0 ) .
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
The maps to symbol, ↦, is a rightward arrow protruding from a vertical bar. It is used in mathematics and in computer science to denote functions.In Z notation, a specification language used in software development, [1] this symbol is called the maplet arrow and the expression x ↦ y is called a maplet.
Any linear map between qubits can be represented as a ZX-diagram, i.e. ZX-diagrams are universal. A given ZX-diagram can be transformed into another ZX-diagram using the rewrite rules of the ZX-calculus if and only if the two diagrams represent the same linear map, i.e. the ZX-calculus is sound and complete.
In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map.