Search results
Results from the WOW.Com Content Network
The cohomology of a cdga is a graded-commutative ring, sometimes referred to as the cohomology ring. A broad range examples of graded rings arises in this way. For example, the Lazard ring is the ring of cobordism classes of complex manifolds. A graded-commutative ring with respect to a grading by Z/2 (as opposed to Z) is called a superalgebra.
In Ring, the category of rings with unity and unity-preserving morphisms, the ring of integers Z is an initial object. The zero ring consisting only of a single element 0 = 1 is a terminal object. In Rig, the category of rigs with unity and unity-preserving morphisms, the rig of natural numbers N is an initial object.
Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of commutative algebra, a major area of modern mathematics. Because these three fields (algebraic geometry, algebraic number theory and commutative ...
A ring is a set R equipped with two binary operations [a] + (addition) and ⋅ (multiplication) satisfying the following three sets of axioms, called the ring axioms: [1] [2] [3] R is an abelian group under addition, meaning that: (a + b) + c = a + (b + c) for all a, b, c in R (that is, + is associative). a + b = b + a for all a, b in R (that ...
In a commutative ring with unity, every maximal ideal is a prime ideal. The converse is not always true: for example, in any nonfield integral domain the zero ideal is a prime ideal which is not maximal. Commutative rings in which prime ideals are maximal are known as zero-dimensional rings, where the dimension used is the Krull dimension.
K is a finite field (Wedderburn's theorem). [2] Equivalently, every finite division ring is commutative. K is the function field of an algebraic curve over an algebraically closed field (Tsen's theorem). [3] More generally, the Brauer group vanishes for any C 1 field. K is an algebraic extension of Q containing all roots of unity. [2]
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
pronounced "R I hat". The kernel of the canonical map π from the ring to its completion is the intersection of the powers of I. Thus π is injective if and only if this intersection reduces to the zero element of the ring; by the Krull intersection theorem, this is the case for any commutative Noetherian ring which is an integral domain or a ...