Search results
Results from the WOW.Com Content Network
Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...
Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition ...
A set of integers can also be called coprime if its elements share no common positive factor except 1. A stronger condition on a set of integers is pairwise coprime, which means that a and b are coprime for every pair (a, b) of different integers in the set. The set {2, 3, 4} is coprime, but it is not pairwise coprime since 2 and 4 are not ...
Using the Chinese remainder theorem, it suffices to evaluate modulo different primes , …, with a product at least . Each prime can be taken to be roughly log M = O ( d m log q ) {\displaystyle \log M=O(dm\log q)} , and the number of primes needed, ℓ {\displaystyle \ell } , is roughly the same.
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that. and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R ...
Bézout's identity. Relating two numbers and their greatest common divisor. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such ...
The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.