enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Llama (language model) - Wikipedia

    en.wikipedia.org/wiki/Llama_(language_model)

    Llama 1 models are only available as foundational models with self-supervised learning and without fine-tuning. Llama 2 – Chat models were derived from foundational Llama 2 models. Unlike GPT-4 which increased context length during fine-tuning, Llama 2 and Code Llama - Chat have the same context length of 4K tokens. Supervised fine-tuning ...

  3. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    Each was trained for 32 epochs. The largest ResNet model took 18 days to train on 592 V100 GPUs. The largest ViT model took 12 days on 256 V100 GPUs. All ViT models were trained on 224x224 image resolution. The ViT-L/14 was then boosted to 336x336 resolution by FixRes, [28] resulting in a model. [note 4] They found this was the best-performing ...

  4. GPT-1 - Wikipedia

    en.wikipedia.org/wiki/GPT-1

    Generative Pre-trained Transformer 1 (GPT-1) was the first of OpenAI's large language models following Google's invention of the transformer architecture in 2017. [2] In June 2018, OpenAI released a paper entitled "Improving Language Understanding by Generative Pre-Training", [ 3 ] in which they introduced that initial model along with the ...

  5. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  6. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    It is a general-purpose learner and its ability to perform the various tasks was a consequence of its general ability to accurately predict the next item in a sequence, [2] [7] which enabled it to translate texts, answer questions about a topic from a text, summarize passages from a larger text, [7] and generate text output on a level sometimes ...

  7. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    GPT-3, specifically the Codex model, was the basis for GitHub Copilot, a code completion and generation software that can be used in various code editors and IDEs. [ 38 ] [ 39 ] GPT-3 is used in certain Microsoft products to translate conventional language into formal computer code.

  8. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec was created, patented, [7] and published in 2013 by a team of researchers led by Mikolov at Google over two papers. [1] [2] The original paper was rejected by reviewers for ICLR conference 2013. It also took months for the code to be approved for open-sourcing. [8] Other researchers helped analyse and explain the algorithm. [4]

  9. GPT-4 - Wikipedia

    en.wikipedia.org/wiki/GPT-4

    Generative Pre-trained Transformer 4 (GPT-4) is a multimodal large language model trained and created by OpenAI and the fourth in its series of GPT foundation models. [1] It was launched on March 14, 2023, [1] and made publicly available via the paid chatbot product ChatGPT Plus, via OpenAI's API, and via the free chatbot Microsoft Copilot. [2]