enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    These are named after Rehuel Lobatto [7] as a reference to the Lobatto quadrature rule, but were introduced by Byron L. Ehle in his thesis. [8] All are implicit methods, have order 2s − 2 and they all have c 1 = 0 and c s = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages.

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α 2 = 3/8) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:

  5. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    First, you have to understand the problem. [2] After understanding, make a plan. [3] Carry out the plan. [4] Look back on your work. [5] How could it be better? If this technique fails, Pólya advises: [6] "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?"

  6. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...

  7. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    For example, a two-stage method has order 2 if b 1 + b 2 = 1, b 2 c 2 = 1/2, and b 2 a 21 = 1/2. [8] Note that a popular condition for determining coefficients is [ 8 ] ∑ j = 1 i − 1 a i j = c i for i = 2 , … , s . {\displaystyle \sum _{j=1}^{i-1}a_{ij}=c_{i}{\text{ for }}i=2,\ldots ,s.}

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]

  9. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    If an equation P(x) = 0 of degree n has a rational root α, the associated polynomial can be factored to give the form P(X) = (X – α)Q(X) (by dividing P(X) by X – α or by writing P(X) – P(α) as a linear combination of terms of the form X k – α k, and factoring out X – α. Solving P(x) = 0 thus reduces to solving the degree n – 1 ...