Search results
Results from the WOW.Com Content Network
A regular expression (shortened as regex or regexp), [1] sometimes referred to as rational expression, [2] [3] is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings , or for input validation .
List of regular expression libraries Name Official website Programming language Software license Used by Boost.Regex [Note 1] Boost C++ Libraries: C++: Boost: Notepad++ >= 6.0.0, EmEditor: Boost.Xpressive Boost C++ Libraries: C++ Boost DEELX RegExLab: C++ Proprietary FREJ [Note 2] Fuzzy Regular Expressions for Java: Java: LGPL GLib/GRegex [Note ...
will match elements such as A[1], A[2], or more generally A[x] where x is any entity. In this case, A is the concrete element, while _ denotes the piece of tree that can be varied. A symbol prepended to _ binds the match to that variable name while a symbol appended to _ restricts the matches to nodes of that symbol.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
TRE is an open-source library for pattern matching in text, [2] which works like a regular expression engine with the ability to do approximate string matching. [3] It was developed by Ville Laurikari [1] and is distributed under a 2-clause BSD-like license.
RE2 is a software library which implements a regular expression engine. It uses finite-state machines, in contrast to most other regular expression libraries. RE2 supports a C++ interface. RE2 was implemented by Google and Google uses RE2 for Google products. [3]
One approach is to utilize "follow restrictions", which instead of directly taking the longest match will put some restrictions on what characters can follow a valid match. For example, stipulating that strings matching [a-z]+ cannot be followed by an alphabetic character achieves the same effect as maximal munch with that regular expression. [5]
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.