Search results
Results from the WOW.Com Content Network
Laminar flow hoods are used to exclude contaminants from sensitive processes in science, electronics and medicine. Air curtains are frequently used in commercial settings to keep heated or refrigerated air from passing through doorways. A laminar flow reactor (LFR) is a reactor that uses laminar flow to study chemical reactions and process ...
A Reynolds number of less than 2300 is laminar fluid flow, which is characterized by constant flow motion, whereas a value of over 4000, is represented as turbulent flow. [16] Due to its smaller radius and lowest velocity compared to other vessels, the Reynolds number at the capillaries is very low, resulting in laminar instead of turbulent flow.
In the case of laminar flow, for a circular cross section: =, =, where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well ...
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...
Thus the flow occurs along the lines of constant ψ and at right angles to the lines of constant φ. [11] Δψ = 0 is also satisfied, this relation being equivalent to ∇ × v = 0. So the flow is irrotational. The automatic condition ∂ 2 Ψ / ∂x ∂y = ∂ 2 Ψ / ∂y ∂x then gives the incompressibility constraint ∇ ...
There are many reasons to study irrotational flow, among them; Many real-world problems contain large regions of irrotational flow. It can be studied analytically. It shows us the importance of boundary layers and viscous forces. It provides us tools for studying concepts of lift and drag.
Diagram of a pulmonary artery catheter in position. The pulmonary wedge pressure (PWP) (also called pulmonary arterial wedge pressure (PAWP), pulmonary capillary wedge pressure (PCWP), pulmonary artery occlusion pressure (PAOP), or cross-sectional pressure) is the pressure measured by wedging a pulmonary artery catheter with an inflated balloon into a small pulmonary arterial branch. [1]
Characterizing the size of the left atrium according to its volume is preferred over a single linear dimension since enlargement can be different for different directions. For example, because of the smaller distance in the thoracic cavity between the sternum and spine , compared to the other directions, less room exists for enlargement of the ...