Search results
Results from the WOW.Com Content Network
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose), fats and proteins. [2] Chemoheterotrophs also obtain the carbon atoms that they need for cellular function from these organic compounds.
Glucose is a sugar with the molecular formula C 6 H 12 O 6.It is overall the most abundant monosaccharide, [4] a subcategory of carbohydrates.It is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.
Caloric concentration in fat tissues are higher than in plant tissues, causing high-fat organisms to be most energetically concentrated; however, the energy required to cultivate feed for livestock is only partially converted into fat cells. The rest of the energy input into cultivating feed is respired or egested by the livestock and unable to ...
The two main processes that contribute to ecosystem respiration are photosynthesis and cellular respiration. Photosynthesis uses carbon-dioxide and water, in the presence of sunlight to produce glucose and oxygen whereas cellular respiration uses glucose and oxygen to produce carbon-dioxide, water, and energy.
The carbon dioxide molecules are used as the carbon source in photosynthesis. The root , especially the root hair, a unique cell, is the essential organ for the uptake of nutrients. The structure and architecture of the root can alter the rate of nutrient uptake.
Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes (e.g. in the form of starches, sugars and fats).