Search results
Results from the WOW.Com Content Network
The theorem is named for the mathematicians Hans Hahn and Stefan Banach, who proved it independently in the late 1920s.The special case of the theorem for the space [,] of continuous functions on an interval was proved earlier (in 1912) by Eduard Helly, [1] and a more general extension theorem, the M. Riesz extension theorem, from which the Hahn–Banach theorem can be derived, was proved in ...
In many ways p-adic analysis is less subtle than classical analysis, since the ultrametric inequality means, for example, that convergence of infinite series of p-adic numbers is much simpler. Topological vector spaces over p-adic fields show distinctive features; for example aspects relating to convexity and the Hahn–Banach theorem are ...
Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.
In mathematics, specifically in functional analysis and Hilbert space theory, vector-valued Hahn–Banach theorems are generalizations of the Hahn–Banach theorems from linear functionals (which are always valued in the real numbers or the complex numbers) to linear operators valued in topological vector spaces (TVSs).
Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space , pointwise boundedness is equivalent to uniform boundedness in operator norm.
A notable example of a result which had to wait for the development and dissemination of general locally convex spaces (amongst other notions and results, like nets, the product topology and Tychonoff's theorem) to be proven in its full generality, is the Banach–Alaoglu theorem which Stefan Banach first established in 1932 by an elementary ...
The above theorem can be used to extend a bounded linear transformation : to a bounded linear transformation from ¯ = to , if is dense in . If S {\displaystyle S} is not dense in X , {\displaystyle X,} then the Hahn–Banach theorem may sometimes be used to show that an extension exists .
The existence of a shift-invariant, finitely additive probability measure on the group Z also follows easily from the Hahn–Banach theorem this way. Let S be the shift operator on the sequence space ℓ ∞ ( Z ), which is defined by ( Sx ) i = x i +1 for all x ∈ ℓ ∞ ( Z ), and let u ∈ ℓ ∞ ( Z ) be the constant sequence u i = 1 for ...