enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement. Consider the following subtraction problem:

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    For instance, a two's-complement addition of 127 and −128 gives the same binary bit pattern as an unsigned addition of 127 and 128, as can be seen from the 8-bit two's complement table. An easier method to get the negation of a number in two's complement is as follows:

  4. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  5. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...

  6. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    For unsigned integers, the bitwise complement of a number is the "mirror reflection" of the number across the half-way point of the unsigned integer's range. For example, for 8-bit unsigned integers, NOT x = 255 - x , which can be visualized on a graph as a downward line that effectively "flips" an increasing range from 0 to 255, to a ...

  7. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's-complement integers. Using a biased exponent, the lesser of two positive floating-point numbers will come out "less than" the greater following the same ordering as for sign and magnitude integers. If two ...

  8. Exponent bias - Wikipedia

    en.wikipedia.org/wiki/Exponent_bias

    When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.

  9. Comparison of instruction set architectures - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_instruction...

    Integers are encoded with a variety of representations, including Sign-magnitude, Ones' complement, Two's complement, Offset binary, Nines' complement and Ten's complement. Similarly, floating point numbers are encoded with a variety of representations for the sign, exponent and mantissa.