Search results
Results from the WOW.Com Content Network
For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...
Free radical reactions are redox reactions that occur as part of homeostasis and killing microorganisms. In these reactions, an electron detaches from a molecule and then re-attaches almost instantly. Free radicals are part of redox molecules and can become harmful to the human body if they do not reattach to the redox molecule or an antioxidant.
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
Hydrogen peroxide (H 2 O 2) can be used as HOCl scavenger whose byproducts do not interfere in the Pinnick oxidation reaction: HOCl + H 2 O 2 → HCl + O 2 + H 2 O. In a weakly acidic condition, fairly concentrated (35%) H 2 O 2 solution undergoes a rapid oxidative reaction with no competitive reduction reaction of HClO 2 to form HOCl. HClO 2 ...
Illustration of a redox reaction Sodium chloride is formed through the redox reaction of sodium metal and chlorine gas. Redox reactions can be understood in terms of the transfer of electrons from one involved species (reducing agent) to another (oxidizing agent). In this process, the former species is oxidized and the latter is reduced. Though ...
Redox reactions (see list of oxidants and reductants) Reduction; Reductive elimination; Reppe synthesis; Riley oxidation; Salt metathesis; Sarett oxidation; Sharpless epoxidation; Shell higher olefin process; Silylation; Simmons–Smith reaction; Sonogashira coupling; Staudinger reaction; Stille reaction; Sulfidation; Suzuki reaction ...
An atom (or ion) whose oxidation number increases in a redox reaction is said to be oxidized (and is called a reducing agent). It is accomplished by loss of one or more electrons. The atom whose oxidation number decreases gains (receives) one or more electrons and is said to be reduced. This relation can be remembered by the following mnemonics.
True organic redox chemistry can be found in electrochemical organic synthesis or electrosynthesis. Examples of organic reactions that can take place in an electrochemical cell are the Kolbe electrolysis. [3] In disproportionation reactions the reactant is both oxidised and reduced in the same chemical reaction forming two separate compounds.