Search results
Results from the WOW.Com Content Network
AERMOD – An atmospheric dispersion model based on atmospheric boundary layer turbulence structure and scaling concepts, including treatment of multiple ground-level and elevated point, area and volume sources. It handles flat or complex, rural or urban terrain and includes algorithms for building effects and plume penetration of inversions aloft.
The ADMS 3 (Atmospheric Dispersion Modelling System) is an advanced atmospheric pollution dispersion model for calculating concentrations of atmospheric pollutants emitted both continuously from point, line, volume and area sources, or intermittently from point sources. [1]
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that include algorithms to solve the mathematical equations that govern the pollutant dispersion.
There are five types of air pollution dispersion models, as well as some hybrids of the five types: [1] Box model – The box model is the simplest of the model types. [2] It assumes the airshed (i.e., a given volume of atmospheric air in a geographical region) is in the shape of a box.
AERMOD, a steady-state gaussian plume dispersion model, is the US EPA's preferred model for estimating point source impacts for primary emitted pollutants. [22] Photochemical grid models, like the Community Multi-scale Air Quality Model (CMAQ), can simulate the complex chemical and physical processes in the atmosphere (including secondary ...
The AERMOD atmospheric dispersion modeling system is an integrated system that includes three modules: [1] [2] [3]. Graphic display of Aermod output. A steady-state dispersion model designed for short-range (up to 50 kilometers) dispersion of direct air pollutant emissions primarily from stationary industrial sources.
SAFE AIR (Simulation of Air pollution From Emissions Above Inhomogeneous Regions) is an advanced atmospheric pollution dispersion model for calculating concentrations of atmospheric pollutants emitted both continuously or intermittently from point, line, volume and area sources. It adopts an integrated Gaussian puff modeling system.
The CALPUFF model is designed to simulate the dispersion of buoyant, puff or continuous point and area pollution sources as well as the dispersion of buoyant, continuous line sources. The model also includes algorithms for handling the effect of downwash by nearby buildings in the path of the pollution plumes.