Search results
Results from the WOW.Com Content Network
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...
The hinge theorem holds in Euclidean spaces and more generally in simply connected non-positively curved space forms.. It can be also extended from plane Euclidean geometry to higher dimension Euclidean spaces (e.g., to tetrahedra and more generally to simplices), as has been done for orthocentric tetrahedra (i.e., tetrahedra in which altitudes are concurrent) [2] and more generally for ...
The relation between and are given by the following table, where the values for DRMS and 2DRMS (twice the distance root mean square) are specific to the Rayleigh distribution and are found numerically, while the CEP, R95 (95% radius) and R99.7 (99.7% radius) values are defined based on the 68–95–99.7 rule
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
Two types of radius gauges. A radius gauge, also known as a fillet gauge, [1] is a tool used to measure the radius of an object. [2] Radius gauges require a bright light behind the object to be measured. The gauge is placed against the edge to be checked and any light leakage between the blade and edge indicates a mismatch that requires ...
as one would expect. This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A, divided by its wetted perimeter P, which leads to =, and the hydraulic radius is half of the 2D mean radius. [3]
In all of the following nose cone shape equations, L is the overall length of the nose cone and R is the radius of the base of the nose cone. y is the radius at any point x, as x varies from 0, at the tip of the nose cone, to L. The equations define the two-dimensional profile of the nose shape.
Roundness is the measure of how closely the shape of an object approaches that of a mathematically perfect circle.Roundness applies in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft or a cylindrical roller for a bearing.