Search results
Results from the WOW.Com Content Network
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube. The sequence of sixth ...
A complex fraction is a fraction whose numerator or denominator, or both, contains a fraction. A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the denominator is 1. An expression which is not in fractional form is an integral ...
Sometimes the way kids respond to math tests are incredibly funny and even smarter than the answers their teachers expect. While everyone hates taking tests, some students are creative enough to ...
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .
Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola.
Decimal fractions like 0.3 and 25.12 are a special type of rational numbers since their denominator is a power of 10. For instance, 0.3 is equal to , and 25.12 is equal to . [20] Every rational number corresponds to a finite or a repeating decimal. [21] [c]
The square of was ; the cube was ; the fourth power was ; the fifth power was ; and meant to subtract everything on the right from the left. [14] So for example, what would be written in modern notation as: x 3 − 2 x 2 + 10 x − 1 , {\displaystyle x^{3}-2x^{2}+10x-1,} Would be written in Diophantus's syncopated notation as: