enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Group method of data handling - Wikipedia

    en.wikipedia.org/wiki/Group_method_of_data_handling

    An important achievement of Combinatorial GMDH is that it fully outperforms linear regression approach if noise level in the input data is greater than zero. It guarantees that the most optimal model will be founded during exhaustive sorting. Basic Combinatorial algorithm makes the following steps:

  3. Multidimensional assignment problem - Wikipedia

    en.wikipedia.org/wiki/Multidimensional...

    The multidimensional assignment problem (MAP) is a fundamental combinatorial optimization problem which was introduced by William Pierskalla. [1] This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows:

  4. Automated planning and scheduling - Wikipedia

    en.wikipedia.org/wiki/Automated_planning_and...

    Given a description of the possible initial states of the world, a description of the desired goals, and a description of a set of possible actions, the planning problem is to synthesize a plan that is guaranteed (when applied to any of the initial states) to generate a state which contains the desired goals (such a state is called a goal state).

  5. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  6. Variable neighborhood search - Wikipedia

    en.wikipedia.org/wiki/Variable_neighborhood_search

    Variable neighborhood search (VNS), [1] proposed by Mladenović & Hansen in 1997, [2] is a metaheuristic method for solving a set of combinatorial optimization and global optimization problems. It explores distant neighborhoods of the current incumbent solution, and moves from there to a new one if and only if an improvement was made.

  7. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    The method is mainly used for numerical optimization, although there are also variants for combinatorial tasks. [10] [11] [12] CMA-ES; Natural evolution strategy; Differential evolution – Based on vector differences and is therefore primarily suited for numerical optimization problems.

  8. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...

  9. Ant colony optimization algorithms - Wikipedia

    en.wikipedia.org/wiki/Ant_colony_optimization...

    In the ant colony optimization algorithms, an artificial ant is a simple computational agent that searches for good solutions to a given optimization problem. To apply an ant colony algorithm, the optimization problem needs to be converted into the problem of finding the shortest path on a weighted graph. In the first step of each iteration ...