enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    A skip list does not provide the same absolute worst-case performance guarantees as more traditional balanced tree data structures, because it is always possible (though with very low probability [5]) that the coin-flips used to build the skip list will produce a badly balanced structure. However, they work well in practice, and the randomized ...

  3. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    A node is α-weight-balanced if weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n]. [7] Here, α is a numerical parameter to be determined when implementing weight balanced trees. Larger values of α produce "more balanced" trees, but not all values of α are appropriate; Nievergelt and Reingold proved that

  4. Lowest common ancestor - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_ancestor

    In this tree, the lowest common ancestor of the nodes x and y is marked in dark green. Other common ancestors are shown in light green. In graph theory and computer science, the lowest common ancestor (LCA) (also called least common ancestor) of two nodes v and w in a tree or directed acyclic graph (DAG) T is the lowest (i.e. deepest) node that has both v and w as descendants, where we define ...

  5. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  6. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.

  7. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key insertion times, in order to keep the height proportional to log 2 (n). Although a certain overhead is involved, it is not bigger than the always necessary lookup cost and may be justified by ensuring fast execution of all ...

  8. Interval tree - Wikipedia

    en.wikipedia.org/wiki/Interval_tree

    An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree, ordered by the 'low' values of the intervals. An extra annotation is then added to every node, recording the maximum upper value among all the intervals from this node down.

  9. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    The static optimality problem is the optimization problem of finding the binary search tree that minimizes the expected search time, given the + probabilities. As the number of possible trees on a set of n elements is ( 2 n n ) 1 n + 1 {\displaystyle {2n \choose n}{\frac {1}{n+1}}} , [ 2 ] which is exponential in n , brute-force search is not ...