enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass balance - Wikipedia

    en.wikipedia.org/wiki/Mass_balance

    The general form quoted for a mass balance is The mass that enters a system must, by conservation of mass, ... Diagram showing clarifier example.

  3. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge.

  4. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass can only be formulated in classical mechanics, in which the energy scales associated with an isolated system are much smaller than , where is the mass of a typical object in the system, measured in the frame of reference where the object is at rest, and is the speed of light.

  5. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    For example, if in the mass continuity equation for flowing water, u is the water's velocity at each point, and ρ is the water's density at each point, then j would be the mass flux, also known as the material discharge. In a well-known example, the flux of electric charge is the electric current density.

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The foundational axioms of fluid dynamics are the conservation laws, specifically, conservation of mass, conservation of linear momentum, and conservation of energy (also known as the first law of thermodynamics). These are based on classical mechanics and are modified in quantum mechanics and general relativity.

  7. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Again, the derivation depends upon (1) conservation of mass, and (2) conservation of energy. Conservation of mass implies that in the above figure, in the interval of time Δt, the amount of mass passing through the boundary defined by the area A 1 is equal to the amount of mass passing outwards through the boundary defined by the area A 2: = =.

  8. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    And so beginning with the conservation of mass and the constraint that the density within a moving volume of fluid remains constant, it has been shown that an equivalent condition required for incompressible flow is that the divergence of the flow velocity vanishes.

  9. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler.