Search results
Results from the WOW.Com Content Network
The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, ... Because the first term in the second series has degree 2, three terms of the first ...
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
It provided the mathematical basis for some landmark early computing machines: Charles Babbage's Difference Engine calculated sines, cosines, logarithms, and other transcendental functions by numerically integrating the first 7 terms of their Taylor series.
Each term of this modified series is a rational function with its poles at = in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.
Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series. [7] Colin Maclaurin (1698–1746) Maclaurin also made significant contributions to the gravitation attraction of ellipsoids, a subject that furthermore attracted the attention of d'Alembert, A.-C ...
Series expansions This page was last edited on 29 October 2015, at 21:05 (UTC) . Text is available under the Creative Commons Attribution-ShareAlike 4.0 License ; additional terms may apply.
where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).
The first four partial sums of the series 1 + 2 + 3 ... Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial ...