enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  4. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  5. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    The Taylor expansion would be: + where / denotes the partial derivative of f k with respect to the i-th variable, evaluated at the mean value of all components of vector x. Or in matrix notation , f ≈ f 0 + J x {\displaystyle \mathrm {f} \approx \mathrm {f} ^{0}+\mathrm {J} \mathrm {x} \,} where J is the Jacobian matrix .

  6. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    Similarly for normal random variables, it is also possible to approximate the variance of the non-linear function as a Taylor series expansion as: V a r [ f ( X ) ] ≈ ∑ n = 1 n m a x ( σ n n ! ( d n f d X n ) X = μ ) 2 V a r [ Z n ] + ∑ n = 1 n m a x ∑ m ≠ n σ n + m n ! m !

  7. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    Furthermore, every polynomial is its own Maclaurin series. The exponential function is analytic. Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their ...

  8. Jet (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Jet_(mathematics)

    This marks an important conceptual distinction between jets and truncated Taylor series: ordinarily a Taylor series is regarded as depending functionally on its variable, rather than its base-point. Jets, on the other hand, separate the algebraic properties of Taylor series from their functional properties.

  9. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}