Search results
Results from the WOW.Com Content Network
In other words, the relevance of external and internal validity to a research study depends on the goals of the study. Furthermore, conflating research goals with validity concerns can lead to the mutual-internal-validity problem, where theories are able to explain only phenomena in artificial laboratory settings but not the real world. [13] [14]
Replication in statistics evaluates the consistency of experiment results across different trials to ensure external validity, while repetition measures precision and internal consistency within the same or similar experiments. [5] Replicates Example: Testing a new drug's effect on blood pressure in separate groups on different days.
External validity is the validity of applying the conclusions of a scientific study outside the context of that study. [1] In other words, it is the extent to which the results of a study can generalize or transport to other situations, people, stimuli, and times.
"Internal and external reliability and validity explained". "Uncertainty models, uncertainty quantification, and uncertainty processing in engineering". Archived from the original on 30 March 2014. "The relationships between correlational and internal consistency concepts of test reliability". Archived from the original on 27 September 2011.
Internal validity, therefore, is more a matter of degree than of either-or, and that is exactly why research designs other than true experiments may also yield results with a high degree of internal validity. In order to allow for inferences with a high degree of internal validity, precautions may be taken during the design of the study.
All models are wrong – Aphorism in statistics; Cross-validation (statistics) – Statistical model validation technique; Identifiability analysis – Methods used to determine how well the parameters of a model are estimated by experimental data; Internal validity – Extent to which a piece of evidence supports a claim about cause and effect
By using one of these methods to account for nuisance variables, researchers can enhance the internal validity of their experiments, ensuring that the effects observed are more likely attributable to the manipulated variables rather than extraneous influences. In the first example provided above, the sex of the patient would be a nuisance variable.
In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2] [3]