Search results
Results from the WOW.Com Content Network
The spectral classes O through M, as well as other more specialized classes discussed later, are subdivided by Arabic numerals (0–9), where 0 denotes the hottest stars of a given class. For example, A0 denotes the hottest stars in class A and A9 denotes the coolest ones.
A G-type main-sequence star (spectral type: G-V), also often, and imprecisely, called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K (5,000 and 5,700 °C; 9,100 and 10,000 °F).
Comparison of main sequence stars of each spectral class. By treating the star as an idealized energy radiator known as a black body, the luminosity L and radius R can be related to the effective temperature T eff by the Stefan–Boltzmann law: = where σ is the Stefan–Boltzmann constant. As the position of a star on the HR diagram shows its ...
A K-type main-sequence star, also referred to as a K-type dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars ("red dwarfs") and yellow/white G-type main-sequence stars.
The revised Yerkes Atlas system [7] listed a dense grid of A-type dwarf spectral standard stars, but not all of these have survived to this day as standards. The "anchor points" and "dagger standards" of the MK spectral classification system among the A-type main-sequence dwarf stars, i.e. those standard stars that have remained unchanged over years and can be considered to define the system ...
Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified, for the spectral class B0Ia. [5] Although the spectrum shows variations, particular in the H-alpha absorption lines, this is considered typical for this type of luminous hot supergiant. [10]
The spectral class S was first defined in 1922 to represent a number of long-period variables (meaning Mira variables) and stars with similar peculiar spectra. Many of the absorption lines in the spectra were recognised as unusual, but their associated elements were not known.
O class main sequence stars are already highly luminous. The giant phase for such stars is a brief phase of slightly increased size and luminosity before developing a supergiant spectral luminosity class. Type O giants may be more than a hundred thousand times as luminous as the sun, brighter than many supergiants.