enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  3. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    [15] [16] The right kites are exactly the kites that are cyclic quadrilaterals, meaning that there is a circle that passes through all their vertices. [17] The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well ...

  4. Right kite - Wikipedia

    en.wikipedia.org/wiki/Right_kite

    In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...

  5. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    More generally, a polygon in which all vertices are concyclic is called a cyclic polygon. A polygon is cyclic if and only if the perpendicular bisectors of its edges are concurrent. [10] Every regular polygon is a cyclic polygon. For a cyclic polygon with an odd number of sides, all angles are equal if and only if the polygon is regular.

  6. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Cyclic quadrilateral. square; kite; Parallelogram. Rhombus (equilateral parallelogram) ... Sierpinski triangle (fractal geometry) Special right triangles; Spiral of ...

  7. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  8. Bicentric polygon - Wikipedia

    en.wikipedia.org/wiki/Bicentric_polygon

    An equilateral triangle A bicentric kite A bicentric isosceles trapezoid A regular pentagon. In geometry, a bicentric polygon is a tangential polygon (a polygon all of whose sides are tangent to an inner incircle) which is also cyclic — that is, inscribed in an outer circle that passes through each vertex of the polygon.

  9. Antiparallelogram - Wikipedia

    en.wikipedia.org/wiki/Antiparallelogram

    In general, crossed quadrilaterals can have unequal edges. [3] A special form of the antiparallelogram is a crossed rectangle, in which two opposite edges are parallel. [4] Every antiparallelogram is a cyclic quadrilateral, meaning that its four vertices all lie on a single circle. [3]