Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
Common aggregate functions include: Average (i.e., arithmetic mean) Count; Maximum; Median; Minimum; Mode; Range; Sum; Others include: Nanmean (mean ignoring NaN values, also known as "nil" or "null") Stddev; Formally, an aggregate function takes as input a set, a multiset (bag), or a list from some input domain I and outputs an element of an ...
Wes McKinney is an American software developer and businessman. He is the creator and "Benevolent Dictator for Life" (BDFL) of the open-source pandas package for data analysis in the Python programming language, and has also authored three versions of the reference book Python for Data Analysis.
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [32] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...
Python data analysis toolkit pandas has the function pivot_table [16] and the xs method useful to obtain sections of pivot tables. [ citation needed ] R has the Tidyverse metapackage, which contains a collection of tools providing pivot table functionality, [ 17 ] [ 18 ] as well as the pivottabler package.
An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a query.
The relationship between the aggregate and its components is a weak "has-a" relationship: The components may be part of several aggregates, may be accessed through other objects without going through the aggregate, and may outlive the aggregate object. [4] The state of the component object still forms part of the aggregate object. [citation needed]