enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). q {\displaystyle q} is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of x {\displaystyle x} , w {\displaystyle w ...

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.

  4. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  5. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.

  6. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as d s 2 = E d u 2 + 2 F d u d v + G d v 2 . {\displaystyle ds^{2}=E\,du^{2}+2F\,du\,dv+G\,dv^{2}\,.}

  7. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    The quantity has units of force per unit length. The quantity M {\displaystyle M} has units of moment per unit length. For isotropic , homogeneous , plates with Young's modulus E {\displaystyle E} and Poisson's ratio ν {\displaystyle \nu } these equations reduce to [ 2 ]

  8. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per area. [2] The flexural modulus defined using the 2-point (cantilever) and 3-point bend tests assumes a linear stress strain response. [3] Flexural modulus measurement

  9. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Simply supported beam with a constant 10 kN per meter load over a 15m length. Take the beam shown at right supported by a fixed pin at the left and a roller at the right. There are no applied moments, the weight is a constant 10 kN, and - due to symmetry - each support applies a 75 kN vertical force to the beam.