Search results
Results from the WOW.Com Content Network
Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe.They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is ...
One may measure the distance between the closest points of the two objects; in this sense, the altitude of an airplane or spacecraft is its distance from the Earth. The same sense of distance is used in Euclidean geometry to define distance from a point to a line , distance from a point to a plane , or, more generally, perpendicular distance ...
Proper distance is also equal to the locally measured distance in the comoving frame for nearby objects. To measure the proper distance between two distant objects, one imagines that one has many comoving observers in a straight line between the two objects, so that all of the observers are close to each other, and form a chain between the two ...
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs) to Earth. The techniques ...
The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs ) to Earth.
The proper length [1] or rest length [2] of an object is the length of the object measured by an observer which is at rest relative to it, by applying standard measuring rods on the object. The measurement of the object's endpoints doesn't have to be simultaneous, since the endpoints are constantly at rest at the same positions in the object's ...
By using a reticle with marks of a known angular spacing, the principle of similar triangles can be used to find either the distance to objects of known size or the size of objects at a known distance. In either case, the known parameter is used, in conjunction with the angular measurement, to derive the length of the other side.