enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    When a line of curvature has a local extremum of the same principal curvature then the curve has a ridge point. These ridge points form curves on the surface called ridges. The ridge curves pass through the umbilics. For the star pattern either 3 or 1 ridge line pass through the umbilic, for the monstar and lemon only one ridge passes through. [3]

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  4. Dupin's theorem - Wikipedia

    en.wikipedia.org/wiki/Dupin's_theorem

    A simple example with at least one pencil of curved surfaces: 1) all right circular cylinders with the z-axis as axis, 2) all planes, which contain the z-axis, 3) all horizontal planes (see diagram). A curvature line is a curve on a surface, which has at any point the direction of a principal curvature (maximal or minimal curvature). The set of ...

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The two principal curvatures at p are the maximum and minimum possible values of the curvature of this plane curve at p, as the plane under consideration rotates around the normal line. The following summarizes the calculation of the above quantities relative to a Monge patch f ( u , v ) = ( u , v , h ( u , v )) .

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Dubins path - Wikipedia

    en.wikipedia.org/wiki/Dubins_path

    Dubins proved his result in 1957. In 1974 Harold H. Johnson proved Dubins' result by applying Pontryagin's maximum principle. [4] In particular, Harold H. Johnson presented necessary and sufficient conditions for a plane curve, which has bounded piecewise continuous curvature and prescribed initial and terminal points and directions, to have minimal length.

  8. Vertex (curve) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(curve)

    In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. [1] This is typically a local maximum or minimum of curvature, [2] and some authors define a vertex to be more specifically a local extremum of curvature. [3]

  9. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    If one of the principal curvatures is zero: κ 1 κ 2 = 0, the Gaussian curvature is zero and the surface is said to have a parabolic point. Most surfaces will contain regions of positive Gaussian curvature (elliptical points) and regions of negative Gaussian curvature separated by a curve of points with zero Gaussian curvature called a ...