Search results
Results from the WOW.Com Content Network
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
To extend the sine and cosine functions to functions whose domain is the whole real line, geometrical definitions using the standard unit circle (i.e., a circle with radius 1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed.
Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length x , {\displaystyle x,} then applying the Pythagorean theorem and definitions of the trigonometric ratios.
Fourier transforms relate a time-domain function (red) to a frequency-domain function (blue). Sine or cosine waves that make up the original function will appear as peaks in the frequency domain functions produced by the sine or cosine transform, respectively. The Fourier sine transform of () is: [note 1]
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola .
Scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan, and sometimes cis and their inverses). [51] Most allow a choice of angle measurement methods: degrees, radians, and sometimes gradians. Most computer programming languages provide function libraries that include the trigonometric functions. [52]
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
Domain of cotangent and cosecant : The domains of and are the same. They are the set of all angles θ {\displaystyle \theta } at which sin θ ≠ 0 , {\displaystyle \sin \theta \neq 0,} i.e. all real numbers that are not of the form π n {\displaystyle \pi n} for some integer n , {\displaystyle n,}