Search results
Results from the WOW.Com Content Network
With the exceptions of 1, 8 and 144 (F 1 = F 2, F 6 and F 12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem). [57] As a result, 8 and 144 ( F 6 and F 12 ) are the only Fibonacci numbers that are the product of other Fibonacci numbers.
The Liber Abaci or Liber Abbaci [1] (Latin for "The Book of Calculation") was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for introducing both base-10 positional notation and the symbols known as Arabic numerals in Europe.
The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Name First elements Short description OEIS Mersenne prime exponents : 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... Primes p such that 2 p − 1 is prime.: A000043 ...
The Fibonacci numbers are a sequence of integers, typically starting with 0, 1 and continuing 1, 2, 3, 5, 8, 13, ..., each new number being the sum of the previous two. The Fibonacci numbers, often presented in conjunction with the golden ratio, are a popular theme in culture. They have been mentioned in novels, films, television shows, and songs.
For example, for p = 3 one has π 1 (3) = 8 which equals 3 2 − 1 = 8; for p = 7, one has π 1 (7) = 16, which properly divides 7 2 − 1 = 48. This analysis fails for p = 2 and p is a divisor of the squarefree part of k 2 + 4, since in these cases are zero divisors , so one must be careful in interpreting 1/2 or k 2 + 4 {\displaystyle {\sqrt ...