enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    Log probabilities are thus practical for computations, and have an intuitive interpretation in terms of information theory: the negative expected value of the log probabilities is the information entropy of an event. Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the ...

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    When the parameters are estimated using the log-likelihood for the maximum likelihood estimation, each data point is used by being added to the total log-likelihood. As the data can be viewed as an evidence that support the estimated parameters, this process can be interpreted as "support from independent evidence adds", and the log-likelihood ...

  4. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, as, for example, mortality rate from cancer ...

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.

  6. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.

  7. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    An alternative derivation of the maximum likelihood estimator can be performed via matrix calculus formulae (see also differential of a determinant and differential of the inverse matrix). It also verifies the aforementioned fact about the maximum likelihood estimate of the mean. Re-write the likelihood in the log form using the trace trick:

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function:

  9. Log-likelihood function - Wikipedia

    en.wikipedia.org/?title=Log-likelihood_function&...

    From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Likelihood function#Log-likelihood; Retrieved from "https: ...