Ad
related to: cathodic and anodic protection
Search results
Results from the WOW.Com Content Network
In the application of passive cathodic protection, a galvanic anode, a piece of a more electrochemically "active" metal (more negative electrode potential), is attached to the vulnerable metal surface where it is exposed to an electrolyte. Galvanic anodes are selected because they have a more "active" voltage than the metal of the target ...
Anodic protection is used for carbon steel storage tanks containing extreme pH environments including concentrated sulfuric acid and 50 percent caustic soda where cathodic protection is not suitable due to very high current requirements. In anodic protection potentiostat is used to maintain a metal at constant potential with respect to ...
A galvanic anode, or sacrificial anode, is the main component of a galvanic cathodic protection system used to protect buried or submerged metal structures from corrosion. They are made from a metal alloy with a more "active" voltage (more negative reduction potential / more positive oxidation potential ) than the metal of the structure.
The difference can be measured as a difference in voltage potential: the less noble metal is the one with a lower (that is, more negative) electrode potential than the nobler one, and will function as the anode (electron or anion attractor) within the electrolyte device functioning as described above (a galvanic cell).
Another example is the cathodic protection of buried or submerged structures as well as hot water storage tanks. In this case, sacrificial anodes work as part of a galvanic couple, promoting corrosion of the anode, while protecting the cathode metal.
Another cathodic protection is used on the impressed current anode. [14] It is made from titanium and covered with mixed metal oxide. Unlike the sacrificial anode rod, the impressed current anode does not sacrifice its structure. This technology uses an external current provided by a DC source to create the cathodic protection. [15]
Anodic inhibitors and cathodic inhibitors are the two main categories of corrosion inhibitors. While cathodic inhibitors act as catalysts to slow down corrosion, anodic inhibitors protect metal surfaces by acting as physical barriers. They can also be divided into organic and inorganic corrosion inhibitors based on their chemical composition. [1]
The cathodic current, in electrochemistry, is the flow of electrons from the cathode interface to a species in solution. The anodic current is the flow of electrons into the anode from a species in solution.
Ad
related to: cathodic and anodic protection