enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [ 1 ] [ 2 ] It is occasionally known as adjunct matrix , [ 3 ] [ 4 ] or "adjoint", [ 5 ] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose .

  3. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    The adjoint state method is a numerical method for efficiently computing the gradient of a function or operator in a numerical optimization problem. [1] It has applications in geophysics, seismic imaging, photonics and more recently in neural networks. [2] The adjoint state space is chosen to simplify the physical interpretation of equation ...

  4. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose "adjoint" matrix should not be confused with the adjugate, ⁡ (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.

  5. Adjoint equation - Wikipedia

    en.wikipedia.org/wiki/Adjoint_equation

    An adjoint equation is a linear differential equation, usually derived from its primal equation using integration by parts.Gradient values with respect to a particular quantity of interest can be efficiently calculated by solving the adjoint equation.

  6. Laplace expansion - Wikipedia

    en.wikipedia.org/wiki/Laplace_expansion

    In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B.

  7. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j: = ¯

  8. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    Then F*P(D)F is essentially self-adjoint and its unique self-adjoint extension is the operator of multiplication by the function P. More generally, consider linear differential operators acting on infinitely differentiable complex-valued functions of compact support.

  9. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A, and this gives the rational canonical form of A.