enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    The matrix [] has rank 2: the first two columns are linearly independent, so the rank is at least 2, but since the third is a linear combination of the first two (the first column plus the second), the three columns are linearly dependent so the rank must be less than 3. The matrix = [] has rank 1: there are nonzero columns, so the rank is ...

  3. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other. By technical definition, it is a method of constructing an orthonormal basis from a set of vectors in an inner ...

  4. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. [1]

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: m-by-n matrix A of rank r Decomposition: A = C F {\displaystyle A=CF} where C is an m -by- r full column rank matrix and F is an r -by- n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x ...

  7. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The rank is equal to the number of pivots in the reduced row echelon form, and is the maximum number of linearly independent columns that can be chosen from the matrix. For example, the 4 × 4 matrix in the example above has rank three. Because the column space is the image of the corresponding matrix transformation, the rank of a matrix is the ...

  8. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃəˈlɛski / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  9. Khatri–Rao product - Wikipedia

    en.wikipedia.org/wiki/Khatri–Rao_product

    Khatri–Rao product. In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as [1][2][3] in which the ij -th block is the mipi × njqj sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal.