enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace expansion - Wikipedia

    en.wikipedia.org/wiki/Laplace_expansion

    Laplace expansion. In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n - matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) - submatrices of B. Specifically, for every i, the Laplace expansion ...

  3. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    Adjugate matrix. In linear algebra, the adjugate of a square matrix A is the transpose of its cofactor matrix and is denoted by adj (A). [1][2] It is also occasionally known as adjunct matrix, [3][4] or "adjoint", [5] though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate ...

  4. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices.

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1] If A is a differentiable map from the real numbers to n × n matrices, then. where tr (X) is the trace of the matrix X and is its adjugate matrix. (The latter equality only holds if A (t) is ...

  6. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule. In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one ...

  7. Incomplete LU factorization - Wikipedia

    en.wikipedia.org/wiki/Incomplete_LU_factorization

    A common choice is to use the sparsity pattern of A 2 instead of A; this matrix is appreciably more dense than A, but still sparse over all. This preconditioner is called ILU(1). One can then generalize this procedure; the ILU(k) preconditioner of a matrix A is the incomplete LU factorization with the sparsity pattern of the matrix A k+1.

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.

  9. Coefficient matrix - Wikipedia

    en.wikipedia.org/wiki/Coefficient_matrix

    Coefficient matrix. Matrix whose entries are the coefficients of a linear equation. In linear algebra, a coefficient matrix is a matrix consisting of the coefficients of the variables in a set of linear equations. The matrix is used in solving systems of linear equations.