enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    is an eigenvector of A corresponding to λ = 3, as is any scalar multiple of this vector. Thus, the vectors v λ=1 and v λ=3 are eigenvectors of A associated with the eigenvalues λ=1 and λ=3, respectively.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    The lowest value among (i=1,2,..,N), , will be the best approximation to the ground state for the basis functions used. The remaining N-1 energies are estimates of excited state energies. An approximation for the wave function of state i can be obtained by finding the coefficients { c j } {\displaystyle \left\lbrace c_{j}\right\rbrace } from ...

  5. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  6. Modal matrix - Wikipedia

    en.wikipedia.org/wiki/Modal_matrix

    A canonical basis for will consist of one linearly independent generalized eigenvector of rank 3 (generalized eigenvector rank; see generalized eigenvector), two of rank 2 and four of rank 1; or equivalently, one chain of three vectors {,,}, one chain of two vectors {,}, and two chains of one vector {}, {}.

  7. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  9. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions.