Search results
Results from the WOW.Com Content Network
In X-ray crystallography, a difference density map or Fo–Fc map shows the spatial distribution of the difference between the measured electron density of the crystal and the electron density explained by the current model. [1] A way to compute this map has been formulated for cryo-EM. [2]
Series of density maps for GroEL: from left to right, 4 Å, 8 Å, 16 Å, and 32 Å resolution.The details are smeared away as the resolution becomes lower. Resolution in the context of structural biology is the ability to distinguish the presence or absence of atoms or groups of atoms in a biomolecular structure.
In iterative model building, it is common to encounter phase bias or model bias: because phase estimations come from the model, each round of calculated map tends to show density wherever the model has density, regardless of whether there truly is a density. This problem can be mitigated by maximum-likelihood weighting and checking using omit maps.
Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ρ ( r ) {\displaystyle \rho ({\textbf {r}})} or n ( r ) {\displaystyle n ...
The arrangement of the electrons in the sample is described quantum mechanically by an "electron density". The electron density is a function of both position and energy, and is formally described as the local density of electron states, abbreviated as local density of states (LDOS), which is a function of energy.
Electron density isosurface map around a covalent bond modelled with the Independent Atom Model in the same scale. Nucleus-centred functions impose lower charge density on the bond path. The primary advantage of the Hansen-Coppens formalism is its ability to free the model from spherical restraints and describe the surroundings of a nucleus far ...
Then, in the absence of phases (Φ), we are unable to complete the shown Fourier transform relating the experimental data from X-ray crystallography (in reciprocal space) to real-space electron density, into which the atomic model is built. MR tries to find the model which fits best experimental intensities among known structures.
Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In the microscope an ...