Search results
Results from the WOW.Com Content Network
The amount of electricity required to run a 1 W device for 1 s. The energy required to accelerate a 1 kg mass at 1 m/s 2 through a distance of 1 m. The kinetic energy of a 2 kg mass travelling at 1 m/s, or a 1 kg mass travelling at 1.41 m/s. The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g.
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the ...
The electric potential energy stored in a capacitor is U E = 1 / 2 CV 2. Some elements in a circuit can convert energy from one form to another. For example, a resistor converts electrical energy to heat. This is known as the Joule effect. A capacitor stores it in its electric field.
A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...
Between 1840 and 1843, Joule carefully studied the heat produced by an electric current. From this study, he developed Joule's laws of heating, the first of which is commonly referred to as the Joule effect. Joule's first law expresses the relationship between heat generated in a conductor and current flow, resistance, and time. [1]
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
James Joule was born in 1818, the son of Benjamin Joule (1784–1858), a wealthy brewer, and his wife, Alice Prescott, on New Bailey Street in Salford. [3] Joule was tutored as a young man by the famous scientist John Dalton and was strongly influenced by chemist William Henry and Manchester engineers Peter Ewart and Eaton Hodgkinson.